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ABSTRACT

Turbulent convection is inherently a nonlocal phenomenon and a primary condition for a successful treatment
of the convective boundary layer is a reliable model of nonlocality. In the dynamic equations governing the
convective flux, the turbulent kinetic energy, etc., nonlocality is represented by the third-order moments (TOMs).
Since the simplest form, the so-called down gradient approximation (DGA), severely underestimates the TOMs
(up to an order of magnitude), a more physical model is needed. In 1994, an analytical model was presented
that was derived directly from the dynamical equations for the TOMs. It considerably improved the DGA but
was a bit cumbersome to use and, more importantly, it was based on the quasi-normal (QN) approximation for
the fourth-order moments.

Here, we present a new analytic expression for the TOMs that is structurally simpler than the 1994 expression
and avoids the QN approximation. The resulting fit to the LES data is superior to that of the 1994 model.

1. Introduction

The search for a reliable expression for the third-order
moments to be used in the dynamic equations for the
second-order moments such as the turbulent kinetic en-
ergy, the convective fluxes, etc., has a long history. For
many years, people used the so-called down gradient
approximation but large eddy simulations (LESs) have
shown that said model severely underestimates the third-
order moments (TOMs) (Moeng and Wyngaard 1989).

Prompted by these results, Canuto et al. (1994) un-
dertook the task of solving directly the dynamic equa-
tions for the TOMs thus avoiding the need for phenom-
enological expressions. The key merit of the 1994 model
was to exhibit the fact that all the TOMs are a linear
combination of the gradients of all the second-order
moments and not only of selected ones, as assumed in
the downgradient approximation. From the performance
viewpoint, the new TOMs reproduced the LES data
quite satisfactorily but the predicted w 2u and wu 2 were
not as good as that of the other TOMs. The weakest
point in the 1994 model was the use of the quasi-normal
(QN) approximation for the fourth-order moments. Both
these limitations have motivated us to search for new
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expressions for the TOMs, which are simpler and with
a better physical content.

2. The new physical ingredient of the third-order
moments

There are six TOMs to be considered:

3 2 2 2 3 2w , q w, w u , wu , u , q u . (1)

Here, u, y , w, and u are the fluctuating velocity and
temperature fields and q2 5 u2 1 y 2 1 w2. Since the
TOMs in (1) have different dimensions, we multiply the
last four by appropriate variables so that all the TOMs
have dimensions of a velocity cubed. Thus, we introduce
the new variables x’s, which have the same dimensions:

2 2 2x [ gat w u , x [ (gat ) wu (2a)1 V 2 V

3 3 2x [ (gat ) u , x [ gat q u (2b)3 V 4 V

2 3x [ wq , z [ w . (2c)5

Here, a is the volume expansion coefficient, g is the
local gravity, and ty is a timescale that will be discussed
below. The original dynamic equations for the TOM
given in (1) can be found in Canuto (1992), Eqs. (37a),
(38a), (39a), and (40a). These equations entail fourth-
order moments that can be written in general as

abcd 5 (ab cd 1 ac bd 1 ad bc )F. (3a)
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If the function F is taken to be unity, Eq.(3a) reduces
to the QN approximation. If so, the timescale ty intro-
duced before can be identified only with the dynamic
timescale of turbulence t 5 2K/e (K and e are the tur-
bulent kinetic energy and its rate of dissipation). With
F 5 1 and ty 5 t , the form of the TOMs was given
in Canuto et al. (1994). The comparison with LES data
was overall satisfactory but the predicted w 2u and wu 2

(Figs. 10, 11 of Canuto et al. 1994) were not as good
as that of the other TOMs. In addition, the expressions
of the TOMs were rather cumbersome due to the explicit
form of the determinant resulting from solving the al-
gebraic equations for the TOMs.

For these reasons, we felt motivated to search for new
expressions for the TOMs that are both simpler to handle
and possess a better physical content. Zilitinkevich et
al. (1999) tried to do so but their solution is not practical
since it does not provide an expression for w 3, which
must be derived from outside, say from LES.

To improve the 1994 model, we were guided by the
fact that with F 5 1, the TOM can become arbitrarily
large while in reality they have finite values, for ex-
ample, the small value of the skewness. Thus, reducing
the TOM given by the F 5 1 case is a way to avoid
unphysical results. How to directly relate this ‘‘damping
effect’’ to a F ± 1 is not a matter that can be carried
out analytically, rather, we have used F in (3a) to for-
mally indicate the physical motivation of our new ap-
proach. In the most successful heuristic model used to
cut down the growth of the TOM, the EDQNM model
(Lesieur 1992), the damping is represented by an ad-
ditional timescale, which one must choose on physical
grounds. Here, we suggest

2 2 21 2t 5 t [1 1 l N t ] , N 5 2ga]T /]z,V 0

t 5 2K/e. (3b)

We shall further take

l0 5 0.04 if N 2 . 0, l0 5 0 if N 2 , 0. (3c)

The 1994 model (Canuto et al. 1994) corresponds to F
5 1 and/or to l0 5 0.

3. The new expression for the third-order
moments

The new analytic expressions for the TOMs are quite
simple:

x 5 X z 2 X x 5 Y z 2 Y (4a)1 0 1 2 0 1

21x 5 Z x 2 Z x 5 W x 1 c x 1 W (4b)3 0 2 1 4 0 5 2 1

x 5 V z 2 V5 0 1

3
21z 5 V 2 1.2X 2 f (c 2 1.2X 1 V ) , (4c)1 1 5 0 01 22

where the functions X, Y, Z, W, and V are defined as

2 2 2 21˜ ˜ ˜X 5 g N (1 2 g N )[1 2 (g 1 g )N ]0 2 3 1 3

2˜X 5 [g f 1 g f 1 g (1 2 g N ) f ]1 0 0 1 1 2 3 2

2 21˜3 [1 2 (g 1 g )N ] (5a)1 3

2 2 21˜ ˜Y 5 2g N (1 2 g N ) X0 2 3 0

2 21 2 21˜ ˜Y 5 2g (1 2 g N ) (N X 1 g g f 1 f ) (5b)1 2 3 1 0 1 0 1

3 3
21 2 21˜Z 5 (c 2 2) N Z 5 (c 2 2) f (5c)0 1 02 2

V 5 v X 1 v Y V 5 v X 1 v Y 1 v (5d)0 0 0 1 0 1 0 1 1 1 2

1
2 21˜W 5 N , W 5 2c f . (5e)0 1 32c

The auxiliary functions v’s are

2 21 21˜v 5 g (1 2 g N ) , v 5 (2c) v ,0 4 5 1 0

5
v 5 v f 1 v f . (6)2 1 3 0 44

Finally, the g’s are constants that depend on the only
adjustable parameter c:

22 21 22g 5 0.52c (c 2 2) , g 5 0.87c0 1

21 21 21g 5 0.5c g 5 0.60c (c 2 2)2 3

21 21 21g 5 2.4(3c 1 5) , g 5 0.6c (3c 1 5) . (7)4 5

Based on previous work, the suggested value is c 5 7
but small variations are allowed. The second-order mo-
ments enter through the functions f 0,. . . ,5, which are de-
fined as follows:

2 2]u ]J 1 ]u
3 4 2 3 2f 5 (ga) t J f 5 (ga) t J 1 w0 V 1 V1 2]z ]z 2 ]z

2]w ]J
2 2 2f 5 gat J 1 2gat w2 V V]z ]z

]J ]K
2 2f 5 gat w 1 J3 V1 2]z ]z

2 2]w ]K ]w
2 2f 5 t w 1 f 5 t w .4 V 5 V1 2]z ]z ]z

(8)

All the functions f ’s have dimensions of velocity cubed.
Finally,

2 2 2˜J 5 wu , N [ t N . (9)V

4. Test of the new TOM versus LES data

In Fig. 1 we compare the new TOMs defined in Eqs.
(2) and given by Eqs. (4)–(9) versus LES data. Rather
than solving the CBL dynamic equations as it was done
in the 1994 paper, here we employed LES data to com-
pute the second-order moments that appear in Eq. (8)
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FIG. 1. Solid lines represent the third-order moments (vs z/h) defined in Eq. (1) and given
explicitly in Eqs. (4)–(9) in terms of the the second-order moments. The LES data are plotted as
dotted lines (Zilitinkevich et al. 1999; the LES data do not provide q 2u ). The same LES data
were also used to evaluate the second-order moments appearing in Eq. (8), as well as to compute
N 2(z) Eq. (3b), and t of Eq. (3b), which are needed to compute ty . We recall that the use of ty

is a heuristic way to account for F ± 1 in (3a), so as to avoid the quasi-normal approximation
used in the 1994 model. The downgradient approximation (DGA) model corresponds to dashed
lines. As well known, the DGA severely underestimates the third-order moments. All TOMs are
normalized with Deardorff convective scales w

*
(52 m s21) and u

*
(50.12 K). The value of the

PBL depth h is 1010 m.

as well as t 5 2K/e and N 2(z) that are needed to com-
pute ty , which is given by Eq. (3b).

The better agreement with LES data with respect to
the 1994 model, especially in Figs. 1c–d, is also partly
due to the simpler analytical form of the TOM, which
has allowed us to test slight variations around the c 5

7 value. Due to its rather rigid nature, the 1994 model
did not allow the same freedom. However, the key rea-
son for the better performance of the new model is of
physical origin: we have abandoned the quasi-normal
approximation for the fourth-order moments that we em-
ployed in the 1994 model and which corresponds to F
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5 1 in (3a). This means that we have searched for a
way to cut down an otherwise unphysical growth of the
TOM by adopting an EDQNM-like procedure. Regret-
tably, at present we do not have an a priori derivation
for (3b, c) which must thus be considered a heuristic
expression of the F ± 1 case.

5. Conclusions

The results presented in Fig. 1 satisfy the two re-
quirements set out at the beginning, the expressions for
the TOMs are simpler than those of the 1994 model and
their physical content is better. As a result, the large
values of w 2u and wu 2 that characterized the 1994 mod-
el are no longer present and an overall better fit is ob-
tained.
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